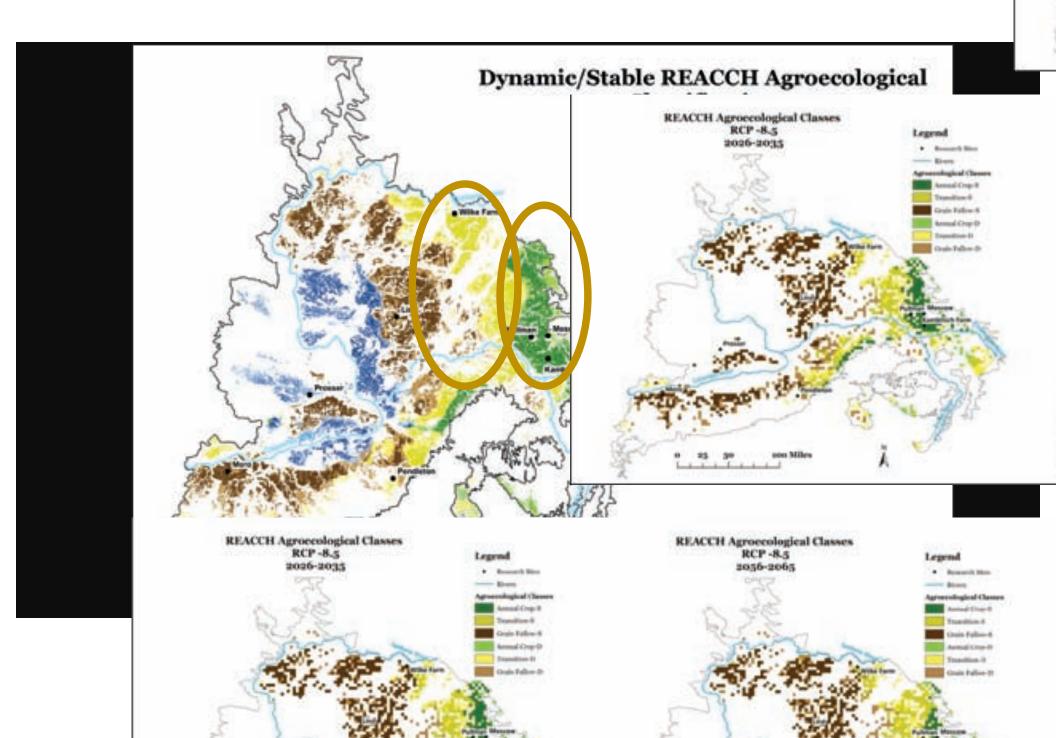
Pacific Northwest Cover Crop Decision Aid System (PaNDAS)

A new WSARE project designed to test the effects of diversified cover crops and termination date on soil moisture, follow-on crop performance, and ecosystem services

Sanford Eigenbrode and others, University of Idaho and PCD Farmer's Network Coffee Hours June 28, 2023

Producer Cooperators



Transition Cropping Zone

- Tracy Erickson
- Mark Greene
- Bruce Petty
- Doug Schuster

Annual Cropping Zone

- Aaron Flansburg
- Garry Esser
- Frank Wolf
- Clint Zenner

UI and PCD Team

Sanford Eigenbrode (PI) Distinguished Professor, Entomology, Plant Pathology and Nematology

University of Idaho

Subodh Adhikari (Co-PI) Postdoctoral Researcher, Entomology, Plant

University of Idaho

Services

Pathology and Nematology

Ryan Boylan (Co-PI) Research and Monitoring Coordinator Palouse Conservation District

Cami Ditton MS student Department of Soil and Water Systems University of Idaho

Patrick Hatzenbuehler (Co-PI) Assistant Professor and Extension Specialist, Agricultural Economics and Rural Sociology

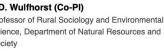
University of Idaho

Jodi Johnson-Maynard (Co-PI) Department Head and Professor, College of Agricultural and Life Sciences, Department of Soil and Water Systems

University of Idaho

Luke Sheneman (Co-PI)

Erin Brooks Professor Department of Soil and Water Systems University of Idaho



Brianna Slothower Laboratory Technician Department of Soil and Water Systems University of Idaho

J.D. Wulfhorst (Co-PI) Professor of Rural Sociology and Environmental Science, Department of Natural Resources and Society

University of Idaho

Kendall Kahl (Co-PI) Research Specialist, College of Agricultural and

University of Idaho

University of Idaho

Fernanda Gomes Moojen (Researcher)

Director of Research Computing and Data

Postdoctoral Fellow, Department of Natural **Resources and Society**

University of Idaho

Life Sciences

PaNDAS Project Objectives

- (Research) Compare cover crop mixtures and termination dates for effects on cover crop performance, water infiltration rates, bulk density, nitrogen availability, weed and insect biodiversity, performance of the subsequent cash crop
- 2. (Research) Compare the effects of treatments in Objective 1 on soil moisture profiles during the season and after different termination dates
- 3. (Education) Use information from Objectives 1 and 2, existing literature and data, and grower interviews to develop the first comprehensive online support system for iPNW cover crop management.

Objective 1

Three cover crop mixtures:

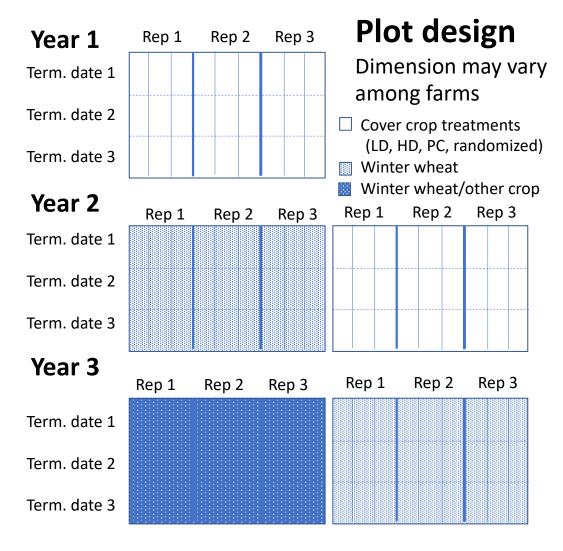
- LD (low diversity) 3 species: one grass, one legume, one brassica
- HD (high diversity) 9 species: 3 of each, grass, legume, brassica
- PC (producer's choice) any mixture as determined by the cooperator

Three termination dates (herbicide) – early, mid, and late

- June 1; first legume flower; first legume pod set?
- June 1 or later; 50% legume bloom; before seed set
- Replicated trials on the eight cooperator farms

Producer Choice Mixtures

Erickson (Tracy, Devin, Kye)	Large: Horizon spring peas, Keystone winter peas, Common vetch, Meeker Chuckling vetch. Small: White Props millet, common radish, Golden flax, <i>Phacelia tanacetifola</i> wildflower
Green, Mark	Horizon spring peas (63%), Everleaf 126 oats (35%), Purple top turnip (2%)
Petty, Bruce	Horizon spring peas (63%), Everleaf 126 oats (35%), Purple top turnip (2%)
Shuster, Doug	Austrian winter peas (30%), Japanese millet (25%), Dixie crimson clover (15%), Attack mustard (8%), Purple top turnip (8%), common radish (7%), <i>Phacelia tanacetifolia</i> (7%) wildflower; and canola, yellow peas, and barley leftover from previous years
Wolf, Frank	Lavina beardless spring forage barley (22%), Hayden Spring oats (22%), Thor 879684836 triticale (22%), Spring forage pea (16%), Dixie Crimson clover (5%), Fixation Balansa clover (1%), Broadleaf mustard (2%), black oil sunflower (2%), Indi Gold oriental mustard (2%), Nitro radish (2%), Purple top turnip (2%)
Flansberg, Aaron	Austrian winter peas (45%), buckwheat (15%), triticale (25%), common vetch (15%)
Zenner, Clint	Gunner triticale (50%), Horizon spring peas (38%), Black oil sunflower (4%), medium red clover (3%), yellow blossom sweet clover (3%), Purple top turnip (1%), Anaconda radish (1%)
Esser, Garry	yellow blossom sweet clover (50%), alfalfa (50%)


Reasons: Nitrogen fertilization, Weed suppression, Bio-drilling, Increasing organic matter, Grazing income

Producer Choice Mixtures

Erickson (Tracy, Devin, Kye)	Large: Horizon spring peas, Keystone winter peas, Common vetch, Meeker Chuckling vetch. Small: White Props millet, common radish, Golden flax, <i>Phacelia tanacetifola</i> wildflower
Green, Mark	Horizon spring peas (63%), Everleaf 126 oats (35%), Purple top turnip (2%)
Petty, Bruce	Horizon spring peas (63%), Everleaf 126 oats (35%), Purple top turnip (2%)
Shuster, Doug	Austrian winter peas (30%), Japanese millet (25%), Dixie crimson clover (15%), Attack mustard (8%), Purple top turnip (8%), common radish (7%), <i>Phacelia tanacetifolia</i> (7%) wildflower; and canola, yellow peas, and barley leftover from previous years
Wolf, Frank	Lavina beardless spring forage barley (22%), Hayden Spring oats (22%), Thor 879684836 triticale (22%), Spring forage pea (16%), Dixie Crimson clover (5%), Fixation Balansa clover (1%), Broadleaf mustard (2%), black oil sunflower (2%), Indi Gold oriental mustard (2%), Nitro radish (2%), Purple top turnip (2%)
Flansberg, Aaron	Austrian winter peas (45%), buckwheat (15%), triticale (25%), common vetch (15%)
Zenner, Clint	Gunner triticale (50%), Horizon spring peas (38%), Black oil sunflower (4%), medium red clover (3%), yellow blossom sweet clover (3%), Purple top turnip (1%), Anaconda radish (1%)
Esser, Garry	yellow blossom sweet clover (50%), alfalfa (50%)

On Each Farm

≈ 4 acres/farm

Objectives 1 and 2

Soil Physical Properties (Annual) Penetration resistance, bulk density, and water infiltration rates

Soil N and Organic Matter (Annual)

Weed and Insect Pressure and Biodiversity (Annual)

Gravimetric Soil Moisture (Annual - at beginning and end of season)

Volumetric Soil Moisture Three Depths – continuously monitored TD2 and TD3, one replicate block per farm

Crop performance: Cover crop biomass and winter wheat yield and quality

Objective 3 Education

Producer Interviews Palouse Alternative Cropping Symposium Field Days Case Studies Cereal Schools and Other Regional Meetings

PaNDAS website (pnwcovercrops.org)

ABOUT

Our website is dedicated to promoting the use of cover crops and fostering a community of farmers to exchange knowledge and experiences. Join us in exploring the benefits of incorporating cover crops in agricultural practices.

First year: Spring 2023

- First and second terminations have been successfully executed, although dates needed to be adjusted based on weather.
- Sampling for stand counts, soil cores, insect diversity, and weeds have been completed.
- This presentation was aired as part of the Soil Health Coffee Hour.
- Sites are being visited for interviews and recordings of activities to post here. Stay tuned!

First year: Spring 2023 – the crops

First year: Spring 2023 - measurements

